Conformally parallel G2 structures on a class of solvmanifolds
نویسندگان
چکیده
منابع مشابه
Conformally Parallel G2 Structures on a Class of Solvmanifolds
Starting from a 6-dimensional nilpotent Lie group N endowed with an invariant SU(3) structure, we construct a homogeneous conformally parallel G2-metric on an associated solvmanifold. We classify all half-flat SU(3) structures that endow the rank-one solvable extension of N with a conformally parallel G2 structure. By suitably deforming the SU(3) structures obtained, we are able to describe the...
متن کاملSolvmanifolds with Integrable and Non-integrable G2 Structures
We show that a 7-dimensional non-compact Ricci-flat Riemannian manifold with Riemannian holonomy G2 can admit non-integrable G2 structures of type R⊕S 2 0 (R )⊕R in the sense of Fernández and Gray. This relies on the construction of some G2 solvmanifolds, whose Levi-Civita connection is known to give a parallel spinor, admitting a 2-parameter family of metric connections with non-zero skew-symm...
متن کاملPolynomial Poisson structures on affine solvmanifolds
A n-dimensional Lie group G equipped with a left invariant symplectic form ω+ is called a symplectic Lie group. It is well-known that ω+ induces a left invariant affine structure on G. Relatively to this affine structure we show that the left invariant Poisson tensor π+ corresponding to ω+ is polynomial of degree 1 and any right invariant k-multivector field on G is polynomial of degree at most...
متن کاملComplex and Kähler Structures on Compact Solvmanifolds
We discuss our recent results on the existence and classification problem of complex and Kähler structures on compact solvmanifolds. In particular, we determine in this paper all the complex surfaces which are diffeomorphic to compact solvmanifolds (and compact homogeneous manifolds in general).
متن کاملA note on compact solvmanifolds with Kähler structures
We know that the existence of Kähler structure on a compact complex manifold imposes certain homological or even homotopical restrictions on its underlining topological manifold. Hodge theory is of central importance in this line. There have been recently certain extensions and progresses in this area of research. Among them is the field of Kähler groups, in which the main subject to study is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematische Zeitschrift
سال: 2006
ISSN: 0025-5874,1432-1823
DOI: 10.1007/s00209-005-0885-7